loading...

دانلود فایل | دانلود ها | پی سی دانلود | سرزمین دانلود

فایلی که اینک در هایپر فایل قرار دادیم ، فایلی است که  دانلود جزوه زبان تخصصی رشته ریاضی کاربردی     می باشد امیدواریم این مجموعه سوالات  برای شما مفید واقع شود  

دانلود جزوه زبان تخصصی رشته ریاضی کاربردی

تیم مدیریتی هایپرتمپ بازدید : 54 جمعه 09 تير 1396 نظرات (0)

فایلی که اینک در هایپر فایل قرار دادیم ، فایلی است که  دانلود جزوه زبان تخصصی رشته ریاضی کاربردی     می باشد امیدواریم این مجموعه سوالات  برای شما مفید واقع شود

 

 

توضیحات محصول :کتاب های خلاصه منابع رشته ریاضی کاربردی همراه بامجموعه تست در هر فصل با پاسخنامه تست

  Season 1:Function and Limit 
An equation of the form y=f(x) is said to define y explicitly as a function of x (the 
function being f), and an equation of the form x=g(y) is said to define x explicitly as a 
function of y (the function being g). For example, y=5x
2
sin x explicitly as a function of x
and x=(7y
3
-2y)2/3 defines x explicitly as a function of y. 
An equation the is not of the form y=f(x) but whose graph in the xy-plane passes the 
vertical line test is said to x, and an equation that is not of the form x=g(y) but whose 
graph in the xy-plane passes the horizontal line test is said to define x implicitly as a 
function of y.
In the preceding sections we treated limits informally, interpreting 
®ax
lim f(x)=L to mean

that the values of f(x) approaches L as x approaches a from either side (but remains  
different from a). However, the phrases 'f(x) approaches L' and 'x approaches a' are 

  intuitive ideas without precise mathematical definitions. This means that if we pick any

positive number, say e , and construct an open interval on they y-axis that extends e

Then is deducing these limits results from the fact that for each of them the numerator  
and denominator both approach zero as h ® 0. As a result, there are two conflicting  
influences on the ratio. The numerator approaching 0 drives the magnitude of the ratio  
toward zero, while the denominator approaching 0 drives the magnitude of the ratio  
toward + ¥ . The precise way in which these influences offset on another determines 

   whether the limit exists and what its value is

In a limit problem where the numerator and denominator both approach zero, it is  
sometimes possible to circumvent the difficulty by using algebraic manipulations to write  
the limit in a different from. However, if that is not possible, as here, other methods are  
required. One such method is to obtain the limit by 'squeezing' the function between  
simpler functions whose limits are known. For example, suppose that we are unable to  
show that  
®ax 
lim f(x)=L directly, but we are able to find two functions, g and h, that have  
same limit L as x®a and such that f is 'squeezing' between g and h by means of the  
inequalities g(x) £f(x) £h(x) it is evident geometrically that f(x) must also approach L as  
x®a because the graph of f lies between the graphs of g and h.  
This idea is formalized in the following theorem, which is called the Squeezing Theorem 
or sometimes the Pinching Theorem

تست های فصل اول 
1) If the domain of a real-valued, continuous function is connected, then the range is 
a. An interval of R it self b. An open set  
c. A compact set- d. A bounded set  
2) A function : ® RAf is said to ……….on A if there exists a constant M > 0 such  
that )( £ Mxf for all Î Ax . 
a. be closed b. be bounded  
c. have extremum d. have maximum  
3) A set Í RU is said to be open if for each ÎUx there is ….number a e such that  
-e + e ),( ÍUxx . 
a. A positive real b. a non-zero real  
c. complex d. a negative set  
4) Let e > 0 , then it is easy to see that <- e 

. Which of the following  
statements is true about f where  
2
a. f is continues at x = 2 b. lim )( 
does not exist.  
c. lim )( 
=4 d. lim )( 
 exist but it is not necessarily 4.  
5) "A function : Rf ®is continuous at a point 0 
x in R if given e > 0 , there is a  
d > 0such that for all x in R with <- d 0 
xx we have <- e 0 
xfxf )()( which of the  
following statements is true in general? 
a. e is a small number b. d is a small number  
c. d is a function, of 0 
x and e d. d is unique  
6) A function is a special case of a……… . 
a. derivative b. equality c. polynomial d. relation 

7) A function f is said to be even if it is defined on a set symmetric with respect to  
the ……and if it is possesses the property - = xfxf )()( . 
a. origin b. x-axis c. y-axis d. open  
8) For any real number x . The …..value of x , denoted by x . 
a. absorbency b. absorption c. abstraction d. absolute  
9) For a real function f, the …..of f is the set of all pairs yx ),( in R´ R such that  
= xfy )( and x is in the domain of the function. 
a. curve b. graph c. greatest d. divisor  
10. The graph = xgy )( is an odd function has the ….as a line symmetry. 
a. y-axis b. origin c. y=x d. x-axis  

پاسخ تست های فصل اول

 

  1)a 2)b 3)a 4)c 5)c 6)d 7)c 8)d 9)b 10)d 

 


دانلود جزوه زبان تخصصی رشته ریاضی کاربردی

ارسال نظر برای این مطلب

نام
ایمیل (منتشر نمی‌شود)
وبسایت
:) :( ;) :D ;)) :X :? :P :* =(( :O @};- :B :S
کد امنیتی
رفرش
کد امنیتی
نظر خصوصی
مشخصات شما ذخیره شود ؟ [حذف مشخصات] [شکلک ها]
درباره ما
Profile Pic
دانلود بهترین فایل های پر کاربر در ایران که توسط گروه هایپرتمپ گرد آوری میشود
اطلاعات کاربری
  • فراموشی رمز عبور؟
  • آمار سایت
  • کل مطالب : 5177
  • کل نظرات : 42
  • افراد آنلاین : 3
  • تعداد اعضا : 0
  • آی پی امروز : 37
  • آی پی دیروز : 29
  • بازدید امروز : 275
  • باردید دیروز : 266
  • گوگل امروز : 1
  • گوگل دیروز : 0
  • بازدید هفته : 541
  • بازدید ماه : 15,806
  • بازدید سال : 92,804
  • بازدید کلی : 1,144,741